Target Amplicon Sequencing for Genotyping Genome-Wide Single Nucleotide Polymorphisms Identified by Whole-Genome Resequencing in Peanut.

نویسندگان

  • Kenta Shirasawa
  • Chikara Kuwata
  • Manabu Watanabe
  • Masanobu Fukami
  • Hideki Hirakawa
  • Sachiko Isobe
چکیده

Genome-wide genotyping data regarding breeding materials are essential resources for improving breeding efficiency, especially in plants with complex genomes with a high degree of polyploidy. Several current breeding efforts in cultivated peanut ( L.), which has a tetraploid genome, are devoted to developing high oleic acid cultivars. Genetic maps for such breeding programs have been developed using simple-sequence repeat (SSR) markers, the use of which requires time-consuming electrophoretic analyses. Next-generation sequencing (NGS) technology can overcome this technical hurdle. Initially, we attempted double-digest restriction site-associated DNA sequencing on peanut breeding materials used to develop high oleic acid cultivars. However, this method was not effective because few single nucleotide polymorphism (SNPs) were available because of low genetic diversity of the lines. The genome sequences of the probable diploid ancestors of cultivated peanut, Krapov. & W. C. Greg. and Krapov. & W. C. Greg., are available. Therefore, we next employed whole-genome resequencing analysis to obtain genome-wide SNP data. In this analysis, we observed large biases in the numbers and genomic positions of interspecific and intraspecific SNPs. For genome-wide genotyping, we selected a subset of SNPs covering the peanut genome as the targets of amplicon sequencing analysis. Using this technique, genome-wide genotypes of the breeding materials were easily and rapidly determined. The SNP information and analytic methods developed in this study should accelerate genetics, genomics, and breeding in peanut.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-throughput genotyping by whole-genome resequencing.

The next-generation sequencing technology coupled with the growing number of genome sequences opens the opportunity to redesign genotyping strategies for more effective genetic mapping and genome analysis. We have developed a high-throughput method for genotyping recombinant populations utilizing whole-genome resequencing data generated by the Illumina Genome Analyzer. A sliding window approach...

متن کامل

Genome Wide Sampling Sequencing for SNP Genotyping: Methods, Challenges and Future Development

Genetic polymorphisms, particularly single nucleotide polymorphisms (SNPs), have been widely used to advance quantitative, functional and evolutionary genomics. Ideally, all genetic variants among individuals should be discovered when next generation sequencing (NGS) technologies and platforms are used for whole genome sequencing or resequencing. In order to improve the cost-effectiveness of th...

متن کامل

Multiplex PCR Targeted Amplicon Sequencing (MTA-Seq): Simple, Flexible, and Versatile SNP Genotyping by Highly Multiplexed PCR Amplicon Sequencing

Next-generation sequencing (NGS) technologies have enabled genome re-sequencing for exploring genome-wide polymorphisms among individuals, as well as targeted re-sequencing for the rapid and simultaneous detection of polymorphisms in genes associated with various biological functions. Therefore, a simple and robust method for targeted re-sequencing should facilitate genotyping in a wide range o...

متن کامل

High-resolution melting curve analysis of genomic and whole-genome amplified DNA.

BACKGROUND High-resolution melting curve analysis is an accurate method for mutation detection in genomic DNA. Few studies have compared the performance of high-resolution DNA melting curve analysis (HRM) in genomic and whole-genome amplified (WGA) DNA. METHODS In 39 paired genomic and WGA samples, 23 amplicons from 9 genes were PCR amplified and analyzed by high-resolution melting curve anal...

متن کامل

Whole-genome resequencing of 100 healthy individuals using DNA pooling

With the advent of next-generation sequencing technology, the cost of sequencing has significantly decreased. However, sequencing costs remain high for large-scale studies. In the present study, DNA pooling was applied as a cost-effective strategy for sequencing. The sequencing results for 100 healthy individuals obtained via whole-genome resequencing and using DNA pooling are presented in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The plant genome

دوره 9 3  شماره 

صفحات  -

تاریخ انتشار 2016